Experimental and Numerical Study on the Thermal Performance of a Water/Steam Cavity Receiver
نویسندگان
چکیده
An experimental platform was designed and built for testing the thermal performance of a water/steam cavity receiver. The experimental platform was utilized to investigate the start-up performance and operation characteristics of the receiver. The electrical heating mode was chosen to simulate the non-uniform distribution of heat flux on the surface of absorber tubes inside the cavity. During start-up the temperature rise rate and the mass flow rate are considered as control variables. A couple of start-up curves under different working pressures were finally obtained. The results showed that the receiver performed at relatively low thermal efficiencies. The main reason for the low thermal efficiency was attributed to the low steam mass flow rate, which causes a high proportional heat loss. In order to study the relationship between thermal efficiency and mass flow rate, a computational model for evaluating the thermal performance of a cavity receiver was built and verified. This model couples three aspects of heat transfer: the radiative heat transfer inside the receiver, the flow boiling heat transfer inside the absorber tubes and the convection heat transfer around the receiver. The water/steam cavity receiver of the experimental platform was studied numerically. The curve of thermal efficiency versus mass flow rate was obtained to show that the thermal efficiency increases with increasing mass flow rate within a certain range, and the increase is more remarkable at low mass flow rates. The purpose of the present study was to determine an appropriate mass flow rate for the receiver of the experimental platform to ensure its efficient operation.
منابع مشابه
Enhancement in energy and exergy efficiency of a solar receiver using suspended alumina nanparticles (nanofluid) as heat transfer fluid
An experimental and theoretical energy and exergy analysis was conducted for a cylindrical cavity receiver employed in a parabolic dish collector. Based on simultaneous energy and exergy analysis, the receiver average wall temperature and overall heat transfer coefficient were determined. A simplified Nusselt number for Heat Transfer Fluid (HTF) through the receiver as a function of Reynolds an...
متن کاملNumerical and Analytical Study of Natural Dry Cooling Tower in a Steam Power Plant
Design of a natural dry cooling tower has been accomplished in two sections: the design of heat exchangers and the numerical solution of flow through the tower. Heat exchanger (Heller type) has been simulated thermodynamically and then coupled with a computer program, which calculated the turbulent natural convection flow through the tower. The computer program developed for this purpose can be...
متن کاملNumerical and Analytical Study of Natural Dry Cooling Tower in a Steam Power Plant
Design of a natural dry cooling tower has been accomplished in two sections: the design of heat exchangers and the numerical solution of flow through the tower. Heat exchanger (Heller type) has been simulated thermodynamically and then coupled with a computer program, which calculated the turbulent natural convection flow through the tower. The computer program developed for this purpose can be...
متن کاملNumerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid
In the present work the effect of Cu-Water nanofluid, as heat transfer fluid, on the performance of a parabolic solar collector was studied numerically. The temperature field, thermal efficiency, mean-outlet temperatures have been evaluated and compared for the conventional parabolic collectors and nanofluid based collectors. Further, the effect of various parameters such as fluid velocity, vol...
متن کاملNumerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid
In the present work the effect of Cu-Water nanofluid, as heat transfer fluid, on the performance of a parabolic solar collector was studied numerically. The temperature field, thermal efficiency, mean-outlet temperatures have been evaluated and compared for the conventional parabolic collectors and nanofluid based collectors. Further, the effect of various parameters such as fluid velocity, vol...
متن کامل